Abstract
Here, we report a simple method to produce hierarchically shaped polymeric one-dimensional nanostructures. More specifically, dual-sized polymer nanowires are fabricated employing multibranched anodic aluminum oxide templates. By fine selection of the anodization conditions, we achieve branched nanopores having a first segment of 400 nm in diameter from which seven further 55 nm in diameter pores arise. Wetting of such nanopores with polymer melts-for example, poly(ε-caprolactone) and polystyrene-allows for the nanomolding of their respective inverse nanostructures, that is, dual-sized multibranched polymer nanowires that, when supported on a flat surface, strongly resemble the spatulae of geckos' toes. The structural features of the dual-sized polymer nanostructures, namely, crystalline phase, crystallinity, texture, and so on, are furthermore characterized and interpreted within the context of polymer phase transitions in confined media. Our work presents a readily applicable approach to produce soft nanomaterials of high morphological complexity, thereby with promising implications in the nanotechnology area, for example, in biomimetic solid adhesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.