Abstract

This paper describes novel multibit static random-access memories (SRAMs) implemented using four-channel spatial wavefunction switched field-effect transistors (SWS FETs) with Ge quantum wells and ZnSSe barriers. A two-bit SRAM cell consists of two back-to-back connected four-channel SWS FETs, where each SWS FET serves as a quaternary inverter. This architecture results in a reduction of the field-effect transistor (FET) count by 75% and data interconnect density by 50%. The designed two-bit SRAM cell is simulated using Berkeley short-channel insulated-gate field-effect transistor equivalent-channel models (for 25-nm FETs). In addition, the binary interface logic and conversion circuitry are designed to integrate the SWS SRAM technology. Our motivation is to stack up multiple bits on a single SRAM cell without multiplying the transistor count. The concept of spatial wavefunction switching (SWS) in the FET structure has been verified experimentally for two- and four-well structures. Quantum simulations exhibiting SWS in four-well Ge SWS FET structures, using the ZnSe/ZnS/ZnMgS/ZnSe gate insulator, are presented. These structures offer higher contrast than Si-SiGe SWS FETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call