Abstract

We present current density-voltage characteristics of Ge quantum dot p+-i-n+ tunneling diodes. The diode structure with Ge quantum dots embedded in the intrinsic region was grown by low temperature molecular beam epitaxy without any postgrowth annealing steps. The quantum dot diodes were fabricated using a low thermal budget fabrication process which preserves the Ge quantum structure. A negative differential resistance at room temperature of a Ge quantum dot tunneling diode was observed. A maximum peak to valley ratio of 1.6 at room temperature was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.