Abstract

Defect reduction in high Ge content Si/SiGe heterostructures is a critically important issue for the successful application of strained Si ULSI technology, considering that a high Ge content is needed for larger and more symmetric enhancements of electron and hole mobilities, and the fact that the defect density usually increases with increasing Ge content. In this paper, two wafers with 30 and 41% target Ge contents, respectively, were characterized by Raman microspectroscopy performed on beveled surfaces, cross-sectional TEM, and preferential etching/Nomarski optical microscopy. It was found that the 41% wafer is continuously graded and the 30% wafer is stepwise graded. This was further confirmed by TEM. Preferential etching shows that the density of threading dislocations in the 30% Ge wafer is approximately 1 to 2/spl times/10/sup 5/ cm/sup -2/, which is about one order lower than that in the 41% Ge sample. Thus, the stepwise grading structure appears to have a positive impact on threading dislocation reduction. Finally, in addition to a cross-grid misfit array of dislocations, truncated line structures were observed in the 30% Ge sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.