Abstract

We show that the explicit assumption of a chemically inhomogeneous interstellar medium allows a better reproduction of the metallicity distribution of G-dwarfs in the solar neighbourhood. The inhomogeneity is considered by assuming that at any time stars are born with a spread in their metallicities, the spread being a Gaussian in the logarithm of the metallicity around the mean metallicity of that epoch. We show that for various simple models of chemical evolution, the fit to the G-dwarf metallicity curve improves considerably once the above assumption is applied. We show that the parameters obtained from the fitting also give acceptable predictions for the age-metallicity relation. We also find that if we use a G-dwarf metallicity function corrected for the scale height inflation of stars, the conventional models of chemical evolution cannot match the shape of the curve, at least under the instantaneous recycling approximation applied to a chemically homogeneous ISM. Under the inhomogeneous ISM approximation, the predicted shapes are found to be better, though not totally satisfactory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call