Abstract
Parkinson's disease (PD) is associated with a progressive loss of dopamine neurons in the substantia nigra and degeneration of dopaminergic terminals in the striatum. Although L-DOPA treatment provides the most effective symptomatic relief for PD it does not prevent the progression of the disease, and its long-term use is associated with the onset of dyskinesia. In rodent and primate studies, glial cell line-derived neurotrophic factor (GDNF) may prevent 6-OHDA- or MPTP-induced nigral degeneration and so may be beneficial in the treatment of PD. In this study, we investigate the effects of GDNF on the expression of dyskinesia in L-DOPA-primed MPTP-treated common marmosets, exhibiting dyskinesia. GDNF or saline was administered by two intraventricular injections, 4 weeks apart, to MPTP-treated, L-DOPA-treated common marmosets primed to exhibit dyskinesia. Prior to GDNF or saline administration, all animals displayed marked dyskinesia when treated with L-DOPA. GDNF administration produced a significant improvement in motor disability and, following the second injection of GDNF, a significant improvement in the locomotor activity was observed. Following the administration of L-DOPA there was a greater reversal of disability and a reduction in the intensity of L-DOPA-induced dyskinesia in GDNF-treated animals compared to saline-treated controls. However, there was no significant difference in L-DOPA's ability to increase locomotor activity between GDNF-treated and saline-treated animals. GDNF treatment caused a significant increase in the number of tyrosine hydroxylase-positive neurons in the substantia nigra, but no change in [(3)H]mazindol binding to dopamine terminals was found in the striatum of GDNF-treated animals compared to saline-treated controls. In GDNF-treated animals a small but significant reduction in enkephalin mRNA was observed in the caudate nucleus but not in the putamen or the nucleus accumbens. Substance P mRNA expression was equally reduced in the caudate nucleus and the putamen of the GDNF-treated animals but not in the nucleus accumbens. Intraventricular administration of GDNF improved MPTP-induced disability and reversed dopamine cell loss in the substantia nigra. GDNF also diminished L-DOPA-induced dyskinesia, which may relate to its ability to partly restore nigral dopaminergic transmission or to modify the activity of striatal output pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.