Abstract

The identification of endogenous neurotrophic factors and their receptors in human spinal cord is important not only to understand development, but also in the consideration of possible future therapies for neurodegenerative disorders and trauma. Using in situ hybridization, the expression of glial cell line-derived neurotrophic factor (GDNF), neurturin (NTN), persephin (PSP), GFRalpha-1, GFRalpha-2, GFRalpha-3 and RET mRNA in human fetal spinal cord was studied. Strong GDNF mRNA hybridization signal, presumably restricted to Clarke's nucleus, was detected in the thoracic spinal cord. mRNA encoding GFRalpha-1 was expressed in the entire spinal cord gray matter with particularly high expression in the ventral horn. GFRbeta-1 was also expressed more weakly in dorsal root ganglia. NTN and persephin mRNA were not detected in either the fetal spinal cord or the dorsal root ganglia. mRNA coding for GFRalpha-2, however, was found in most cells of the spinal cord gray matter. A strong expression of GFRalpha-3 mRNA was detected in dorsal root ganglia cells and Schwann cells. The transducing receptor RET was expressed strongly in motorneurons and dorsal root ganglion neurons. We conclude that basic features concerning the role of the GDNF family of ligands and their receptors revealed in rodents applies to humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call