Abstract

Olfactory bulb (OB) interneurons are generated from neuroblast cells derived from the anterior subventricular zone (SVZa) of the forebrain. The mechanisms guiding the rostral migration of these neuronal precursors are not well understood. Here, we show that glial cell line-derived neurotrophic factor (GDNF) is produced in the olfactory bulb but distributed along the rostral migratory stream (RMS) in a pattern concordant with the expression of its GPI-anchored receptor GFRα1. We demonstrate that GDNF is a chemoattractant factor for RMS-derived neuronal precursors, but not for SVZa neuroblast cells. In agreement with this, GDNF increased Cyclin-dependent kinase 5 (Cdk5) activity in RMS cells, a kinase critically involved in neuronal migration and guidance. GDNF-mediated cell chemoattraction was abrogated in RMS explants treated with the Cdk5 inhibitor Roscovitine as well as in RMS explants isolated from Ncam mutant mice. Chemical cross-linking assays showed that 125I-GDNF is able to interact directly with NCAM in RMS-derived cells. Taken together, these data demonstrate that GDNF is a direct chemoattractant factor for neuroblast cells migrating along the RMS and support the participation of NCAM during this guidance process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.