Abstract

Glial-cell-line-derived neurotrophic factor (GDNF) family ligands (GFLs), which consist of GDNF, neurturin, artemin and persephin, regulate the development and maintenance of the nervous system. GDNF protects and repairs dopamine-containing neurons, which degenerate in Parkinson's disease, and motoneurons, which die in amyotrophic lateral sclerosis. GDNF and neurturin have shown promise in clinical trials of Parkinson's disease, and artemin is currently undergoing clinical trials for chronic pain treatment. However, the delivery of GFLs into the brain through invasive approaches such as neurosurgery, viral vectors or by the use of encapsulated cells is associated with multiple obstacles. The development of small molecules that specifically activate GFL receptors and that can be applied systemically would overcome most of these problems. The unique nature of the GFL receptors, recent progress in elucidation of the 3D structures of GFLs and GFL-receptor complexes and the use of high-throughput screening have resulted in the development of the first small molecules that mimic the effects of the different GFLs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.