Abstract

Apoptotic cell death of photoreceptors is the final event leading to blindness in the heterogeneous group of inherited retinal degenerations. GDNF (glial cell-line-derived neurotrophic factor) was found to rescue photoreceptor function and survival very effectively in an animal model of retinal degeneration (M. Frasson, S. Picaud, T. Leveillard, M. Simonutti, S. Mohand-Said, H. Dreyfus, D. Hicks, and J. Sahel, Investig. Ophthalmol. Vis. Sci. 40:2724-2734, 1999). However, the cellular mechanism of GDNF action remained unresolved. We show here that in porcine retina, GDNF receptors GFRalpha-1 and RET are expressed on retinal Mueller glial cells (RMG) but not on photoreceptors. Additionally, RMG express the receptors for the GDNF family members artemin and neurturin (GFRalpha-2 and GFRalpha-3). We further investigated GDNF-, artemin-, and neurturin-induced signaling in isolated primary RMG and demonstrate three intracellular cascades, which are activated in vitro: MEK/ERK, stress-activated protein kinase (SAPK), and PKB/AKT pathways with different kinetics in dependence on stimulating GFL. We correlate the findings to intact porcine retina, where GDNF induces phosphorylation of ERK in the perinuclear region of RMG located in the inner nuclear layer. GDNF signaling resulted in transcriptional upregulation of FGF-2, which in turn was found to support photoreceptor survival in an in vitro assay. We provide here a detailed model of GDNF-induced signaling in mammalian retina and propose that the GDNF-induced rescue effect on mutated photoreceptors is an indirect effect mediated by retinal Mueller glial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.