Abstract

Our dimethyl sulfate modification experiments suggest that (dG)n stretches within single-stranded DNA fragments, which represent the simplest model for telomeric sequences, adopt a complex intrastrand structure other than a simple hairpin. We present a molecular model for the DNA structure that conforms to dimethyl sulfate methylation data. The principal element of this G-DNA structure is a quadruple helix formed by pairwise antiparallel segments of the twice-folded (dG)n stretch. This quadruple core has two wide and two narrow grooves connected by three loop-shaped segments. The strong stacking interactions of the neighboring guanine tetrads and the large number of hydrogen bonds formed can be the primary reasons that such structures are favored over a common hairpin for long (dG)n stretches. Such compact structures may be formed from (dG)n stretches of telomeric sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.