Abstract

116 Background: Cachexia affects many cancer patients. Growth differentiation factor-15 (GDF15) is a protein that regulates weight and the stress response of cells. The GDF15 gene encodes a ligand of TGF-beta that triggers cachexia and modulates the progression from tumorigenesis to metastasis. Inhibition of GDF15 with an antibody restored muscle mass and fat in animal models. Serum levels rise in proportion to the progression of colon cancer, predict outcome, and have been correlated with CEA. Methods: We retrospectively reviewed 7607 CRC tumors profiled by Caris Life Sciences (Phoenix, AZ) from 2019 to 2020. Profiling included whole transcriptome sequencing (RNA-Seq by NovoSeq). Tumor mutational burden, mismatch repair status, and pathway genomic alterations were evaluated. QuantiSEQ was used to assess immune cell infiltration in the tumor microenvironment. Results: GDF15 expression ranged from 0 to 593 transcripts per million (TPM) with median of 30 (IQR = 15.02). There was no association with age, sex, or primary tumor sidedness. MSI-H/dMMR tumors had higher GDF15 expression (median 37 vs 30, p = 0.0004); TMB > = 17 tumors was seen in 5.9% of bottom quartile (Q1) GDF15 expressors and 8.3% of top quartile (Q4). PDL1 IHC positivity was inversely correlated with GDF15 expression (7.1% in Q1 vs. 2.6% in Q4, p < 0.0001). Genomic alterations associated with higher GDF15 expression (Q4 vs Q1) included genes on TGF-B (SMAD2/4), PI3K (PIK3CA, MTOR), chromatin remodeling (ARID1A, KMT2C), DDR (ATM) and Wnt pathway (APC); those inversely associated included MYC CNA and TP53. Q1 tumors had higher CNA of ERBB2 and FGFR1. Relative neutrophils and NK cells in the TME increased from Q1 to Q4 (p < 0.001). There was a decrease in CD8+ T-cells and Treg cells from Q1 to Q4. Conclusions: GDF15 expression correlates with increased dMMR/MSI-H and TMB, but not with PDL1 expression. Mutations and activated pathways associated with GDF15 expression may explain increased cachexia with more aggressive disease. The association with chromatin remodeling may warrant therapies targeting histone modification and epigenetics. The increase in NK cells but decrease in CD8+ T cells in the TME with increasing GDF15 suggests approaches to treatment. Higher CD8+ lymphocyte counts correlate with PFS with immunotherapy. Anti-PD-L1 therapy reinvigorates the killing function of CD8+ T cells. The decrease in CD8+ T cells and PDL1 positivity with rising GDF15 suggests worse outcome and a lack of response to anti-PDL1 therapy. NK cell checkpoint inhibitors, CARs, and an anti-GFRAL antibody are now in clinical trials and might be utilized in high GDF15 cancers. GDF15 is emerging as a target in the treatment of obesity and cachexia and as a prognostic marker in oncology. Understanding its expression in metastatic colon cancer may reveal which patients could benefit from developing anti-GDF15 targeted therapies against cancer progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call