Abstract
We argue that Gödel's completeness theorem is equivalent to completability of consistent theories, and Gödel's incompleteness theorem is equivalent to the fact that this completion is not constructive, in the sense that there are some consistent and recursively enumerable theories which cannot be extended to any complete and consistent and recursively enumerable theory. Though any consistent and decidable theory can be extended to a complete and consistent and decidable theory. Thus deduction and consistency are not decidable in logic, and an analogue of Rice's Theorem holds for recursively enumerable theories: all the non-trivial properties of them are undecidable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.