Abstract

Surface imperfections in steel materials potentially degrade quality and performance, thereby escalating the risk of accidents in engineering applications. Manual inspection, while traditional, is laborious and lacks consistency. However, recent advancements in machine learning and computer vision have paved the way for automated steel defect detection, yielding superior accuracy and efficiency. This paper introduces an innovative deep learning model, GDCP-YOLO, devised for multi-category steel defect detection. We enhance the reference YOLOv8n architecture by incorporating adaptive receptive fields via the DCNV2 module and channel attention in C2f. These integrations aim to concentrate on valuable features and minimize parameters. We incorporate the efficient Faster Block and employ Ghost convolutions to generate more feature maps with reduced computation. These modifications streamline feature extraction, curtail redundant information processing, and boost detection accuracy and speed. Comparative trials on the NEU-DET dataset underscore the state-of-the-art performance of GDCP-YOLO. Ablation studies and generalization experiments reveal consistent performance across a variety of defect types. The optimized lightweight architecture facilitates real-time automated inspection without sacrificing accuracy, offering invaluable insights to further deep learning techniques for surface defect identification across manufacturing sectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call