Abstract
Melanomas often accumulate gangliosides, sialic acid-containing glycosphingolipids found in the outer leaflet of plasma membranes, as disialoganglioside GD3 and its derivatives. Here, we have transfected the GD3 synthase gene (ST8Sia I) in a normal melanocyte cell line in order to evaluate changes in the biological behavior of non-transformed cells. GD3-synthase expressing cells converted GM3 into GD3 and accumulated both GD3 and its acetylated form, 9-O-acetyl-GD3. Melanocytes were rendered more migratory on laminin-1 surfaces. Cell migration studies using the different transfectants, either treated or not with the glucosylceramide synthase inhibitor d-1-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (PPPP), allowed us to show that while GM3 is a negative regulator of melanocyte migration, GD3 increases it. We showed that gangliosides were shed to the matrix by migrating cells and that GD3 synthase transfected cells shed extracellular vesicles (EVs) enriched in GD3. EVs enriched in GD3 stimulated cell migration of GD3 negative cells, as observed in time lapse microscopy studies. Otherwise, EVs shed by GM3+veGD3−ve cells impaired migration and diminished cell velocity in cells overexpressing GD3. The balance of antimigratory GM3 and promigratory GD3 gangliosides in melanocytes could be altered not only by the overexpression of enzymes such as ST8Sia I, but also by the horizontal transfer of ganglioside enriched extracellular vesicles. This study highlights that extracellular vesicles transfer biological information also through their membrane components, which include a variety of glycosphingolipids remodeled in disease states such as cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.