Abstract

Gd2O3 (0–0.8wt.%)-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state process. The effects of Gd2O3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction (XRD) data shows that Gd2O3 in an amount of 0.2–0.8wt.% can diffuse into the lattice of BNKT18 ceramics and form a pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain size of BNKT18 ceramics decreases with the increase of Gd2O3 content; in addition, all the modified ceramics have a clear grain boundary and a uniformly distributed grain size. At room temperature, the ferroelectric and piezoelectric properties of the BNKT18 ceramics have been improved with the addition of Gd2O3, and the BNKT18 ceramics doped with 0.4wt.% Gd2O3 have the highest piezoelectric constant (d33=137pC/N), highest relative dielectric constant (εr=1023) and lower dissipation factor (tanδ=0.044) at a frequency of 10kHz. The BNKT18 ceramics doped with 0.2wt.% Gd2O3 have the highest planar coupling factor (kp=0.2463).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.