Abstract

Disialoganglioside GD2 is expressed by glioblastoma multiforme (GBM) cells representing a promising target for anti-GD2 immunotherapeutic approaches. The aim of the present study was to investigate anti-tumor efficacy of the chimeric anti-GD2 antibody (Ab) dinutuximab beta against GBM. Expression levels of GD2 and complement regulatory proteins (CRP; CD46, CD55 and CD59) on well-known and newly established primary tumor originated GBM cell lines were analyzed by flow cytometry. Ab-dependent cellular (ADCC) and complement-dependent cytotoxicity (CDC) mediated by dinutuximab beta against GBM cells were determined by a non-radioactive calcein-AM-based assay. Analysis of primary GBM cells revealed a heterogeneous GD2 expression that varied between the cell lines analyzed with higher expression levels in the tumor surface compared to the core originated cells. Both GD2-positive and -negative tumor cells were detected in every cell line analyzed. In contrast to CDC, ADCC mediated by dinutuximab beta was observed against the majority of GBM cells. Importantly, CDC-resistant cells showed high expression of the CRP CD46, CD55 and CD59. Our present data show anti-tumor effects mediated by dinutuximab beta against GBM cells providing a rationale for a GD2-directed immunotherapy against GBM. Due to high CRP expression, a combining of GD2-targeting with CRP blockade might be a further treatment option for GBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call