Abstract

Biocompatible, durable and high catalytic cathode is crucial for the performance of photosynthetic microalgae microbial fuel cell (PMMFC). In this study, gadolinium-cobalt (Gd-Co) nanosheet arrays were coated on N-doped carbon spheres (N-CSs) that were supported using nickel foam (NF), to form a unique 3D hierarchical architecture of Gd-Co@N-CSs/NF cathode material. The morphology and structure of Gd-Co@N-CSs/NF was investigated by physicochemical characterization. The electricity generation and stability of NF, N-CSs/NF, Co@N-CSs/NF and Gd-Co@N-CSs/NF were evaluated using a dual-chamber PMMFC system with Chlorella vulgaris (C. vulgaris) in the cathode chamber. Results showed that doption of Gd to the cathode material resulted in Gd-Co@N-CSs/NF exhibiting superior catalytic activity for the oxygen reduction reaction (ORR), with an ORR peak potential of 0.78 V (vs. RHE). The electron transfer number (n) of Gd-Co@N-CSs/NF was 3.906, indicating ORR was mainly realized via 4e− transfer pathway. Gd-Co@N-CSs/NF achieved a maximum power density of 115.9 mW m−2 and an open circuit voltage of 614.8 mV, higher than the other three cathode materials. Gd-Co@N-CSs/NF exhibited excellent stability during 360 h of the PMMFC process, only dropping 5.8 % of maximum voltage. The cell density of C. vulgaris (3.7 × 1010 cells L−1) in Gd-Co@N-CSs/NF system was significantly higher than those of NF, N-CSs/NF and Co@N-CSs/NF. This study shows that Gd-Co@N-CSs/NF is a promising cathode material and may be highly beneficial for the enhancement of PMMFC systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call