Abstract

Double perovskite oxides BaGd0.8La0.2Co2O6−δ (BGLC), BaGdCo1.8Fe0.2O6−δ (BGCF), BaPrCo2O6−δ (BPC) and BaPrCo1.4Fe0.6O6−δ (BPCF) were investigated as oxygen electrodes on mixed conducting BaZr0.7Ce0.2Y0.1O3 (BZCY72) electrolyte using impedance spectroscopy vs temperature, pO2, and pH2O. We propose and have applied a novel approach to extract and parameterise the charge transfer and diffusion impedances of the electrode reactions in a system comprising charge transport of protons, oxide ions, and electrons. Given by the properties of the BZCY72, transport of protons dominates at lower temperatures and high pH2O, oxide ions at higher temperatures, and electron holes increasingly at high temperatures and high pO2. The electrodes showed good performance, with the lowest total apparent polarisation resistance for BGLC/BZCY72 being 0.05 and 10Ωcm2 at 650 and 350°C, respectively. The low temperature rate limiting reaction step is a surface related process, involving protonic species, with an activation energy of approximately 50kJmol−1 for BGLC/BZCY72. The oxide ion transport taking over at higher temperatures exhibits a higher activation energy typical of SOFC cathodes. Thermogravimetric studies revealed that BGLC exhibits considerable protonation at 300–400°C, which may be interpreted as hydration with an enthalpy of approximately –50kJmol−1. The resulting mixed proton electron conduction may explain its good performance as electrode on BZCY72.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.