Abstract

We report the heteroditopic ligand H5L, which contains a DO3A unit for Gd(3+) complexation connected to an NO2A moiety through a N-propylacetamide linker. The synthesis of the ligand followed a convergent route that involved the preparation of 1,4-bis(tert-butoxycarbonylmethyl)-1,4,7-triazacyclononane following the orthoamide strategy. The luminescence lifetimes of the Tb((5)D4) excited state measured for the TbL complex point to the absence of coordinated water molecules. Density functional theory calculations and (1)H NMR studies indicate that the EuL complex presents a square antiprismatic coordination in aqueous solution, where eight coordination is provided by the seven donor atoms of the DO3A unit and the amide oxygen atom of the N-propylacetamide linker. Addition of Zn(2+) to aqueous solutions of the TbL complex provokes a decrease of the emission intensity as the emission lifetime becomes shorter, which is a consequence of the coordination of a water molecule to the Tb(3+) ion upon Zn(2+) binding to the NO2A moiety. The relaxivity of the GdL complex recorded at 7 T (25 °C) increases by almost 150% in the presence of 1 equiv of Zn(2+), while Ca(2+) and Mg(2+) induced very small relaxivity changes. In vitro magnetic resonance imaging experiments confirmed the ability of GdL to provide response to the presence of Zn(2+).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call