Abstract

In this study, we investigated the effects of granulocyte colony-stimulating factor (G-CSF) for the treatment of noise-induced hearing loss (NIHL) in a guinea pig model. Forty guinea pigs were randomly divided into four groups: control, noise (white noise, 3h/d for 2 days at 115dB), noise+G-CSF (350μg/kg/d for 5 days), and noise+saline. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) were used to determine the hearing threshold and outer hair cell function, respectively, in each group. Cochlear morphology was examined to evaluate hair cell injury induced by intense noise exposure. Fourteen days after noise exposure, the noise+G-CSF group had a lower ABR value than the noise group (P<0.05) or the noise+saline group (P<0.01). At most frequencies, the DPOAE value of the noise+G-CSF group showed a significant rise (P<0.05) compared to the noise group or the noise+saline group. Neither the ABR value nor the DPOAE value differed between the noise group and the noise+saline group. The morphology of the phalloidin-stained organ of Corti was consistent with the functional measurements. In conclusion, G-CSF can preserve hearing in an experimental model of NIHL in guinea pigs, by preserving hair cells after intense noise exposure

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call