Abstract
BackgroundA computationally efficient tool is required for a genome-wide gene-gene interaction analysis that tests an extremely large number of single-nucleotide polymorphism (SNP) interaction pairs in genome-wide association studies (GWAS). Current tools for GWAS interaction analysis are mainly developed for unrelated case-control samples. Relatively fewer tools for interaction analysis are available for complex disease studies with family-based design, and these tools tend to be computationally expensive.ResultsWe developed a fast gene-gene interaction test, GCORE-sib, for discordant sib pairs and implemented the test into an efficient tool. We used simulations to demonstrate that the GCORE-sib has correct type I error rates and has comparable power to that of the regression-based interaction test. We also showed that the GCORE-sib can run more than 10 times faster than the regression-based test. Finally, the GCORE-sib was applied to a GWAS dataset with approximately 2,000 discordant sib pairs, and the GCORE-sib finished testing 19,368,078,382 pairs of SNPs within 6 days.ConclusionsAn efficient gene-gene interaction tool for discordant sib pairs was developed. It will be very useful for genome-wide gene-gene interaction analysis in GWAS using discordant sib pairs. The tool can be downloaded for free at http://gcore-sib.sourceforge.net.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1145-z) contains supplementary material, which is available to authorized users.
Highlights
A computationally efficient tool is required for a genome-wide gene-gene interaction analysis that tests an extremely large number of single-nucleotide polymorphism (SNP) interaction pairs in genome-wide association studies (GWAS)
Genome-wide association studies (GWAS) are a popular strategy to investigate the genetic structure of complex diseases by identifying the association between single nucleotide polymorphisms (SNPs) and complex disorders
GWAS analysis is mainly focused on testing the effects of individual SNPs on complex diseases; complex diseases are likely to result from the interactions among multiple genes
Summary
A computationally efficient tool is required for a genome-wide gene-gene interaction analysis that tests an extremely large number of single-nucleotide polymorphism (SNP) interaction pairs in genome-wide association studies (GWAS). Genome-wide association studies (GWAS) are a popular strategy to investigate the genetic structure of complex diseases by identifying the association between single nucleotide polymorphisms (SNPs) and complex disorders. Several approaches, which can finish genome-wide interaction tests in a reasonable time while still maintaining statistical power, have been developed for GWAS with unrelated case-control samples. Some examples for these approaches include SNPHarvester [6], SNPRuler [7], and BOOST [8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.