Abstract
The Advanced microwave scanning radiometer 2 (AMSR2) is part of the global change observationmission-water (GCOM-W). AMSR2 has filled the gap in passive microwave observations left by the loss of theAMSR–earth observing system (AMSR-E) after almost ten years of observations. Both missions provide brightness temperature observations that are used to retrieve soil moisture estimates at the near surface. A merged AMSR-E and AMSR2 data product will help build a consistent long-term dataset; however, before this can be done, it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on the validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites around the world. A total of three soil moisture products that rely on different algorithms were evaluated; the Japan Aerospace Exploration Agency (JAXA) soil moisture algorithm, the land parameter retrieval model (LPRM), and the single channel algorithm (SCA). JAXA, SCA, and LPRM soil moisture estimates capture the overall climatological features. The spatial features of the three products have similar overall spatial structure. The JAXA soil moisture product shows a lower dynamic range in the retrieved soil moisture with a satisfactory performance matrix when compared to in situ observations [unbiased root mean square error (ubRMSE) = 0.059 m3/m3, Bias = −0.083 m3 /m3, R = 0.465]. The SCA performs well over low and moderately vegetated areas (ubRMSE = 0.053 m3/m3, Bias = −0.039 m3/m3, R = 0.549). The LPRM product has a large dynamic range compared to in situ observations with a wet bias (ubRMSE = 0.094 m3 /m3, Bias = 0.091 m3/m3, R = 0.577). Some of the error is due to the difference in observation depth between the in situ sensors (5 cm) and satellite estimates (1 cm). Results indicate that overall the JAXA and SCA have the best performance based upon the metrics considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.