Abstract

ABSTRACTIn Saccharomyces cerevisiae the Lysine-acetyltransferase Gcn5 (KAT2) is part of the SAGA complex and is responsible for histone acetylation widely or at specific lysines. In this paper we report that GCN5 deletion differently affects the growth of two strains. The defective mitochondrial phenotype is related to a marked decrease in mtDNA content, which also involves the deletion of specific regions of the molecule. We also show that in wild-type mitochondria the Gcn5 protein is present in the mitoplasts, suggesting a new mitochondrial function independent from the SAGA complex and possibly a new function for this protein connecting epigenetics and metabolism.

Highlights

  • Histone acetylation, the major chromatin modification regulating nuclear transcription, is a transient epigenetic mark, and is regulated by histone acetyltransferases and deacetylases

  • We have demonstrated that the ubiquitin protease 8 (Ubp8) of the DUB module is necessary in respiratory metabolism and we showed its expression is upregulated in respiratory condition compared to fermentation (Leo et al, 2018)

  • We have previously shown that the KAT2-Gcn5 protein of the HAT module is required for respiratory metabolism and oxygen consumption, indicating a role of this protein in mitochondria

Read more

Summary

Introduction

The major chromatin modification regulating nuclear transcription, is a transient epigenetic mark, and is regulated by histone acetyltransferases and deacetylases. The K-acetyltransferase (KAT)-General Control Nonderepressible (Gcn5) has a major role in histone H3 acetylation at genome-wide level and at specific loci linked to stress response (Gaupel et al, 2015). We have demonstrated that the ubiquitin protease 8 (Ubp8) of the DUB module is necessary in respiratory metabolism and we showed its expression is upregulated in respiratory condition compared to fermentation (Leo et al, 2018). We have previously shown that the KAT2-Gcn protein of the HAT module is required for respiratory metabolism and oxygen consumption, indicating a role of this protein in mitochondria. Compared with fermentative growth, in respiratory condition the expression level of GCN5 is upregulated at protein as well as at mRNA level (Canzonetta et al, 2016)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.