Abstract

Missing data pattern identification and recovery (MDIR) is vital for accurate air pollution monitoring. To recover the missing air pollution data, GCN-ST-MDIR, a Graph Convolutional Network (GCN)-based MDIR framework, is proposed to identify daily missing data patterns and automatically select the best recovery method. GCN-ST-MDIR presents four novelties: (1) A new graph construction is developed to improve GCN data representation for MDIR using S-T similarity matrix and domain-specific knowledge (e.g. weekend/weekday). (2) A TL component is used to pre-train LSCE and ILSCE models. (3) A GCN structure outputs a selection indicator to determine the dominant missing pattern for daily input. The pre-trained data recovery model's accuracy is incorporated into the GCN loss function to penalize the wrong indicator. (4) The output of the GCN structure is used as a score to combine LSCE and ILSCE. Results show that the domain-specific S-T regularity and irregularity can be used as the prior information for both GCN and ILSCE/LSCE to enhance feature extraction. Our model considerably improves the recovery performance as compared to the baselines. GCN-ST-MDIR has achieved an accuracy of 88.48% for general missing data recovery with consecutively and sporadically missing data. GCN-ST-MDIR can be extended to many other S-T MDIR challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call