Abstract
A single receptive field limits the expression of multilevel receptive field features in point cloud registration, leading to the pseudo-matching of objects with similar geometric structures in low-overlap scenes, which causes a significant degradation in registration performance. To handle this problem, a point cloud registration network that incorporates dense graph convolution and a mutilevel interaction Transformer (GCMTN) in pursuit of better registration performance in low-overlap scenes is proposed in this paper. In GCMTN, a dense graph feature aggregation module is designed for expanding the receptive field of points and fusing graph features at multiple scales. To make pointwise features more discriminative, a multilevel interaction Transformer module combining Multihead Offset Attention and Multihead Cross Attention is proposed to refine the internal features of the point cloud and perform feature interaction. To filter out the undesirable effects of outliers, an overlap prediction module containing overlap factor and matching factor is also proposed for determining the match ability of points and predicting the overlap region. The final rigid transformation parameters are generated based on the distribution of the overlap region. The proposed GCMTN was extensively verified on publicly available ModelNet and ModelLoNet, 3DMatch and 3DLoMatch, and odometryKITTI datasets and compared with recent methods. The experimental results demonstrate that GCMTN significantly improves the capability of feature extraction and achieves competitive registration performance in low-overlap scenes. Meanwhile, GCMTN has value and potential for application in practical remote sensing tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.