Abstract
Previous studies on gonadal steroidogenesis have not compared metabolic pathways between fetal and adult mouse testes to date. To evaluate comparative metabolic signatures of testicular steroids between fetus and adult mice using gas chromatography-mass spectrometry (GC-MS)-based steroid profiling. GC-MS with molecular-specific scan modes was optimized for selective and sensitive detection of 23 androgens, 7 estrogens, 14 progestogens, and 13 corticoids from mouse testes with a quantification limit of 0.1-5.0ng/mL and reproducibility (coefficient of variation: 0.3%-19.9%). Based on 26 steroids quantitatively detected in testes, comparative steroid signatures were analyzed for mouse testes of 8 fetuses on embryonic day 16.5 and 8 adults on postnatal days 56-60. In contrast to large amounts of steroids in adult testes (P<.0002), all testicular levels per weight unit of protein were significantly increased in fetal testes (P<.002, except 6β-hydroxytestosterone of P=.065). Both 11β-hydroxyandrostenedione and 7α-hydroxytestosterone were only measurable in fetal testes, and metabolic ratios of testosterone to androstenediol and androstenedione were also increased in fetal testes (P<.05 for both). Testicular steroid signatures showed that both steroidogenic Δ4 and Δ5 pathways in the production of testosterone were activated more during prenatal development. Both 7α- and 11β-hydroxylations were predominant, while hydroxylations at C-6, C-15, and C-16 of testosterone and androstenedione were decreased in the fetus. The present GC-MS-based steroid profiling may facilitate understanding of the development of testicular steroidogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.