Abstract

A simple method was developed for detection of Bacillus anthracis (BA) endospores and for differentiation of them from other species in the Bacillus cereus group. Chemical profiles that include lipids (i.e., fatty acids), carbohydrates (i.e., sugars), and the spore-specific biomarker, dipicolinic acid, were generated by one-step thermochemolysis (TCM) at 140 °C in 5 min to provide specific biomarker signatures. Anthrose, which is a biomarker characteristic of the B. cereus group of bacteria, was determined from a fragment produced by TCM. Surprisingly, several virulent BA strains contained very low levels of anthrose, which confounded their detection. A statistical discrimination algorithm was constructed using a combination of biomarkers, which was robust against different growth conditions (medium and temperature). Fifteen endospore-forming Bacillus species were confirmed in a statistically designed test (~90%) using the algorithm, including six BA strains (four virulent isolates), five B. thuringiensis (BT) isolates, and one isolate each for B. cereus (BC), B. mycoides (BM), B. atrophaeus (BG), and B. subtilis (BS). The detection limit for B. anthracis was found to be 50,000 endospores, on the basis of the GC/MS detection limits for 3-methyl-2-butenoic acid methyl ester, which is the biomarker derived from TCM of anthrose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.