Abstract
Jacaranda mimosifolia trees are grown in frost-free regions globally. The aim of this study was to evaluate the methanol crude extract and various fractions of increasing polarity of J. mimosifolia leaves for bioactive metabolites, as well as antimicrobial, antioxidant and anticancer activities. The anti-inflammatory potential of the various fractions of J. mimosifolia leaf extract was studied via the lipoxygenase (LOX) inhibitory assay. Methanol crude extract (ME), derived fractions extracted with chloroform (CF) and ethyl acetate (EAF), and residual aqueous extract (AE) of dried J. mimosifolia leaves were assayed for polyphenolic compounds, their antioxidant, antimicrobial and lipoxygenase (LOX) inhibitory activities, and anticancer properties. Polyphenolic compounds were determined via HPLC while phytochemicals (total phenolics, flavonoids, tannins and ortho-diphenol contents), antioxidant activities (DPPH, hydrogen peroxideperoxide, hydroxyl and superoxide radical anions) and LOX were measured via spectrophotometry. Methanol extracts and various fractions were evaluated for antibacterial activities against Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Staphylococcus aureus. Antifungal potential of the fractions was tested against three species: Aspergillus flavus, Aspergillus fumigatus and Fusarium oxysporum. The highest values for total phenolic content (TPC), total flavonoid content (TFC), flavonols, tannins and ortho-diphenols were in the ME, followed by CF > EAF > AE. ME also had the highest antioxidant activity with EC50 values 48±1.3, 45±2.4, 42±1.3 and 46±1.3 μg/mL based on the DPPH, hydrogen peroxide, hydroxyl radical and superoxide radical assays, respectively. TPC and TFC showed a significant, strong and positive correlation with the values for each of these antioxidant activities. ME exhibited anti-inflammatory potential based on its LOX inhibitory activity (IC50 = 1.3 μg/mL). ME also had the maximum antibacterial and antifungal potential, followed by EAF > CF > AE. Furthermore, ME showed the strongest cytotoxic effect (EC50 = 10.7 and 17.3 μg/mL) against human hormone-dependent prostate carcinoma (LnCaP) and human lung carcinoma (LU-1) cell lines, respectively. Bioactive compounds present in leaf methanol extracts of J. mimosifolia were identified using gas chromatography–mass spectrometry (GC–MS). Fifteen compounds were identified including phenolic and alcoholic compounds, as well as fatty acids. Our results suggest that J. mimosifolia leaves are a good source of natural products with antioxidant, anti-inflammatory and anti-cancer properties for potential therapeutic, nutraceutical and functional food applications.
Highlights
Contemporary interest in medicinal plants originates from their extensive use in traditional medicines, especially in developing countries [1]
In this study the qualitativeq analysis of phytochemicals of Jacaranda mimosifolia revealed the presence of alkaloids, phenolics, flavonoids tannin and saponin in all the leaf extract fractions
Qualitative phytochemical analysis of J. mimosifolia leaf extract showed the presence of alkaloids, phenolics, flavonoids, tannins and saponins [55]
Summary
Contemporary interest in medicinal plants originates from their extensive use in traditional medicines, especially in developing countries [1]. Natural antioxidants in the form of their chemical constituents or raw plant extracts are very effective (at least in vitro) in preventing harmful conditions instigated by oxidative stress [6, 7]. These antioxidants have the ability to scavenge free radicals, which are usually in the form of reactive oxygen or nitrogen species (ROS/RNS). Many studies have reported the positive potential of certain antioxidants to help prevent these diseases [9, 10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.