Abstract
Identification of potential drug-target interactions (DTIs) plays a pivotal role in the development of drug and target discovery in the public healthcare sector. However, biological experiments for predicting interactions between drugs and targets are still expensive, complicated, and time-consuming. Thus, computational methods are widely applied for aiding drug-target interaction prediction. In this paper, we propose a novel model, named GCMCDTI, for DTIs prediction which adopts a graph convolutional network based on matrix completion. We regard the association prediction between drugs and targets as link prediction and treat the process as matrix completion, and then a graph convolutional auto-encoder framework is employed to construct the drug and target embeddings. Then, a bilinear decoder is applied to reconstruct the DTI matrix. We conduct our experiments on four benchmark datasets consisting of enzymes, G protein-coupled receptors (GPCRs), ion channels, and nuclear receptors. The five-fold cross-validation results achieve the high average AUC values of 95.78%, 95.31%, 93.90%, and 91.77%, respectively. To further evaluate our method, we compare our proposed method with other state-of-the-art approaches. The comparison results illustrate that our proposed method obtains improvement in performance on DTI prediction. The proposed method will be a good choice in the field of DTI prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of bioinformatics and computational biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.