Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies, threatening millions of lives worldwide each year. Importantly, GC is a heterogeneous disease, posing a significant challenge to the selection of patients for more optimized therapy. Over the last decades, extensive community effort has been spent on dissecting the heterogeneity of GC, leading to the identification of distinct molecular subtypes that are clinically relevant. However, so far, no tool is publicly available for GC subtype prediction, hindering the research into GC subtype-specific biological mechanisms, the design of novel targeted agents, and potential clinical applications. To address the unmet need, we developed an R package GCclassifier for predicting GC molecular subtypes based on gene expression profiles. To facilitate the use by non-bioinformaticians, we also provide an interactive, user-friendly web server implementing the major functionalities of GCclassifier. The predictive performance of GCclassifier was demonstrated using case studies on multiple independent datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.