Abstract

A 2D/1D/2D dual-interface nano-composite configuration in the form of CdS nanorods sandwiched between g-C3N4 and rGO sheets with intimate interfacial contact is synthesized by a facile wet-chemical method and is shown to exhibit excellent photocatalytic H2 generation under visible-light irradiation. In particular, the optimal g-C3N4/CdS/rGO dual-interface nano-composite shows H2 production rate of ∼4800 μmol h−1 g−1, which is almost 44, 11 and 2.5 times higher than that shown by pure g-C3N4 nanosheets, and the g-C3N4/rGO and g-C3N4/CdS single interface heterostructures, respectively. It is shown that the synergic effects involving the band structure match and close interfacial contact, which can accelerate the separation and transfer of photoinduced charge carriers, and the enhanced visible-light absorption together contribute to the impressive photocatalytic performance and photostability of the g-C3N4/CdS/rGO ternary nano-composite system. Specific advantages of a dual-interface triple-composite system over a single interface case(s) are also brought out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.