Abstract

The coatings used in cans can release complex chemical mixtures into foodstuffs. Therefore, it is important to develop analytical methods for the identification of these potential migrant compounds in packaged food to guarantee the compliance with European food packaging legislation and ensure consumer safety. In the present work, the type of coating in a total of twelve cans collected in Santiago de Compostela (Spain) were evaluated using an ATR (attenuated total reflectance)-FTIR spectrometer. These samples were analysed after extraction with acetonitrile in order to identify potential migrants through a screening method by gas chromatography coupled to mass spectrometry (GC-MS). A total of forty-seven volatile and semi-volatile compounds were identified in these samples, including plasticizers, photoinitiators, antioxidants, lubricants, etc. Then, in a second step, a targeted analysis was carried out for the simultaneous determination of 13 compounds, including bisphenols (BPA, BPB, BPC, BPE, BPF, BPG) and BADGEs (BADGE, BADGE.H2O, BADGE.2H2O, BADGE.HCl, BADGE.2HCl, BADGE.H2O.HCl, cyclo-di-BADGE) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with atmospheric pressure chemical ionisation (APCI) source. Among all the bisphenols analysed, only the bisphenol A was detected in four samples; while cyclo-di-BADGE was the predominant compound detected in all the samples analysed.

Highlights

  • Of the material used in the manufacturing and the production process, cans for foods and beverages are typically coated on the internal and external side with an organic layer of 1 to 10 μm thickness

  • Since the 1950s, major types of internal can coating have been made from synthetic polymers known as epoxy-based resins, which contain among their components bisphenol A (BPA) or bisphenol

  • The most common epoxy-based coatings are synthesized from bisphenol A and epichlorohydrin forming epoxy resins of bisphenol A diglycidyl ether (BADGE)

Read more

Summary

Introduction

Of the material used in the manufacturing (tin, plate, tin-free steel, or aluminium) and the production process, cans for foods and beverages are typically coated on the internal and external side with an organic layer of 1 to 10 μm thickness. This coating is essential for protecting the integrity of the can from the effects of the food, and to prevent chemical reactions between the can and the food that could lead to food contamination. Chlorinated derivatives of BADGE may be generated during the thermal coating treatment, since

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.