Abstract

Galanthamine-type alkaloids produced by plants of the Amaryllidaceae family are potent acetylcholinesterase inhibitors. One of them, galanthamine, has been marketed as a hydrobromide salt for the treatment of Alzheimer's disease. In the present work, gas chromatography with electron impact mass spectrometry (GC-EIMS) fragmentation of 12 reference compounds isolated from various amaryllidaceous plants and identified by spectroscopic methods (1D and 2D nuclear magnetic resonance, circular dichroism, high-resolution MS (HRMS) and EIMS) was studied by tandem mass spectrometry (GC-MS/MS) and accurate mass measurements (GC-HRMS). The studied compounds showed good peak shape and efficient GC separation with a GC-MS fragmentation pattern similar to that obtained by direct insertion probe. With the exception of galanthamine-N-oxide and N-formylnorgalanthamine, the galanthamine-type compounds showed abundant [M](+.) and [M-H](+) ions. A typical fragmentation pattern was also observed, depending on the substituents of the skeleton. Based on the fragmentation pathways of reference compounds, three other galanthamine-type alkaloids, including 3-O-(2'-butenoyl)sanguinine, which possesses a previously unelucidated structure, were identified in Leucojum aestivum ssp. pulchelum, a species endemic to the Balearic islands. GC-MS can be successfully applied to Amaryllidaceae plant samples in the routine screening for potentially new or known bioactive molecules, chemotaxonomy, biodiversity and identification of impurities in pharmaceutical substances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call