Abstract

Gain-cell embedded DRAM (GC-eDRAM) is an attractive alternative to conventional SRAM due to its high-density, low-leakage, and inherent two-ported functionality. However, its dynamic storage mechanism requires power-hungry refresh cycles to maintain data. This problem is aggravated due to the impact of process–voltage–temperature (PVT) variations at deeply scaled technology nodes and low voltages. In this brief, we present a gain-cell embedded DRAM (GC-eDRAM) with body-bias compensated readout, which is dynamically configured to extend the data retention time (DRT) of the memory under varying operating conditions. The proposed GC-eDRAM exploits the body-biasing capabilities of FD-SOI technology to adjust the switching threshold of the sense inverter under PVT variations. An additional, unbiased, sense inverter is added to provide a dual-sampling mechanism to the readout path, enabling error detection to further reduce design guard bands. An 8-kb GC-eDRAM with integrated body-bias compensated readout and error detection was implemented in 28-nm FD-SOI technology. Silicon measurements of the manufactured array demonstrate up to 75% DRT improvement and up to 86% energy savings under PVT and frequency variations compared to a conventional guard banded memory design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.