Abstract
Generalized Beam Theory (GBT), intended to analyze the structural behavior of prismatic thin-walled members and structural systems, expresses the member deformed configuration as a combination of cross-section deformation modes multiplied by the corresponding longitudinal amplitude functions. The determination of the latter, often the most computer-intensive step of the analysis, is almost always performed by means of GBT-based “conventional” 1D (beam) finite elements. This paper presents the formulation, implementation and application of the so-called “exact element method” in the framework of GBT-based elastic free vibration analyses. This technique, originally proposed by Eisenberger (1990), uses the power series method to solve the governing differential equations and obtains the vibration eigenvalue problem from the boundary terms. A few illustrative numerical examples are presented, focusing mainly on the comparison between the combined accuracy and computational effort associated with the determination of vibration solutions with the exact and conventional GBT-based (finite) elements. This comparison shows that the GBT-based exact element method may lead to significant computational savings, particularly when the vibration modes exhibit large half-wave numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.