Abstract

Abstract Measured reflection data such as the bidirectional texture function (BTF) represent spatial variation under the full hemisphere of view and light directions and offer a very realistic visual appearance. Despite its high‐dimensional nature, recent compression techniques allow rendering of BTFs in real time. Nevertheless, a still unsolved problem is that there is no representation suited for real‐time rendering that can be used by designers to modify the BTF's appearance. For intuitive editing, a set of low‐dimensional comprehensible parameters, stored as scalars, colour values or texture maps, is required. In this paper we present a novel way to represent BTF data by introducing the geometric BRDF (g‐BRDF), which describes both the underlying meso‐ and micro‐scale structure in a very compact way. Both are stored in texture maps with only a few additional scalar parameters that can all be modified at runtime and thus give the designer full control over the material's appearance in the final real‐time application. The g‐BRDF does not only allow intuitive editing, but also reduces the measured data into a small set of textures, yielding a very effective compression method. In contrast to common material representation combining heightfields and BRDFs, our g‐BRDF is physically based and derived from direct measurement, thus representing real‐world surface appearance. In addition, we propose an algorithm for fully automatic decomposition of a given measured BTF into the g‐BRDF representation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call