Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dysregulated immune responses. The key mediators of AD pathogenesis are T helper 2 (TH2) cells and TH2 cytokines. Targeting interleukin 4 (IL4), IL13 or IL31 has become a pivotal focus in both research and clinical treatments for AD. However, the need remains pressing for the development of a more effective and safer therapy, as the current approaches often yield low response rates and adverse effects. In response to this challenge, we have engineered a immunoglobulin G-single-chain fragment variable (scFv) format bispecific antibody (Ab) designed to concurrently target IL4R and IL31R. Our innovative design involved sequence optimization of VL-VH and the introduction of disulfide bond (VH44-VL100) within the IL31Rα Ab scFv region to stabilize the scFv structure. Our bispecific Ab efficiently inhibited the IL4/IL13/IL31 signaling pathways in vitro and reduced serum immunoglobulin E and IL31 levels in vivo. Consequently, this intervention led to improved inflammation profiles and notable amelioration of AD symptoms. This research highlighted a novel approach to AD therapy by employing bispecific Ab targeting IL4Rα and IL31Rα with potent efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call