Abstract
Abstract Hypergeometric type operators are shape invariant, and a factorization into a product of first order differential operators can be explicitely described in the general case. Some additional shape invariant operators depending on several parameters are defined in a natural way by starting from this general factorization. The mathematical properties of the eigenfunctions and eigenvalues of the operators thus obtained depend on the values of the parameters involved. We study the parameter dependence of orthogonality, square integrability and monotony of the eigenvalue sequence. The results obtained allow us to define certain systems of Gazeau-Klauder type coherent states and to describe some of their properties. Our systematic study recovers a number of well-known results in a natural, unified way and also leads to new findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.