Abstract

BackgroundSuccessful hand-object interactions require precise hand-eye coordination with continual movement adjustments. Quantitative measurement of this visuomotor behaviour could provide valuable insight into upper limb impairments. The Gaze and Movement Assessment (GaMA) was developed to provide protocols for simultaneous motion capture and eye tracking during the administration of two functional tasks, along with data analysis methods to generate standard measures of visuomotor behaviour. The objective of this study was to investigate the reproducibility of the GaMA protocol across two independent groups of non-disabled participants, with different raters using different motion capture and eye tracking technology.MethodsTwenty non-disabled adults performed the Pasta Box Task and the Cup Transfer Task. Upper body and eye movements were recorded using motion capture and eye tracking, respectively. Measures of hand movement, angular joint kinematics, and eye gaze were compared to those from a different sample of twenty non-disabled adults who had previously performed the same protocol with different technology, rater and site.ResultsParticipants took longer to perform the tasks versus those from the earlier study, although the relative time of each movement phase was similar. Measures that were dissimilar between the groups included hand distances travelled, hand trajectories, number of movement units, eye latencies, and peak angular velocities. Similarities included all hand velocity and grip aperture measures, eye fixations, and most peak joint angle and range of motion measures.DiscussionThe reproducibility of GaMA was confirmed by this study, despite a few differences introduced by learning effects, task demonstration variation, and limitations of the kinematic model. GaMA accurately quantifies the typical behaviours of a non-disabled population, producing precise quantitative measures of hand function, trunk and angular joint kinematics, and associated visuomotor behaviour. This work advances the consideration for use of GaMA in populations with upper limb sensorimotor impairment.

Highlights

  • Various sensorimotor impairments including stroke [1], amputation [2], and spinal cord injury [3] lead to deficits in upper limb performance, which can hamper activities of daily living that require precise hand-object interactions [4]

  • The objective of this study was to investigate the reproducibility of the Gaze and Movement Assessment (GaMA) protocol across two independent groups of nondisabled participants, with different raters using different motion capture and eye tracking technology

  • The reproducibility of GaMA was confirmed by this study, despite a few differences introduced by learning effects, task demonstration variation, and limitations of the kinematic model

Read more

Summary

Introduction

Various sensorimotor impairments including stroke [1], amputation [2], and spinal cord injury [3] lead to deficits in upper limb performance, which can hamper activities of daily living that require precise hand-object interactions [4]. Functional assessments are used to gauge the impact of upper limb impairment and to monitor rehabilitative progress thereafter [5,6] Such assessments often do not yield precise and comprehensive measures of joint and trunk movements, along with hand function measures such as grip aperture [7,8]. Successful hand-object interactions require precise hand-eye coordination with continual movement adjustments Quantitative measurement of this visuomotor behaviour could provide valuable insight into upper limb impairments. The Gaze and Movement Assessment (GaMA) was developed to provide protocols for simultaneous motion capture and eye tracking during the administration of two functional tasks, along with data analysis methods to generate standard measures of visuomotor behaviour. The objective of this study was to investigate the reproducibility of the GaMA protocol across two independent groups of nondisabled participants, with different raters using different motion capture and eye tracking technology.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.