Abstract

This paper studies a Gaussian Z-interference channel with a rate-limited digital relay link from one receiver to another. Achievable rate regions are derived based on a combination of a Han–Kobayashi common-private power-splitting technique and either a compress-and-forward relay strategy or a decode-and-forward strategy for interference subtraction at the other end. For the Gaussian Z-interference channel with a digital link from the interference-free receiver to the interfered receiver, the capacity region is established in the strong interference regime; an achievable rate region is established in the weak interference regime. In the weak interference regime, the decode-and-forward strategy is shown to be asymptotically sum-capacity achieving in the high signal-to-noise ratio and high interference-to-noise ratio limit. In this case, each relay bit asymptotically improves the sum capacity by one bit. For the Gaussian Z-interference channel with a digital link from the interfered receiver to the interference-free receiver, the capacity region is established in the strong interference regime; achievable rate regions are established in the moderately strong and weak interference regimes. In addition, the asymptotic sum capacity is established in the limit of a large relay link rate. In this case, the sum capacity improvement due to the digital link is bounded by half a bit when the interference link is weaker than a certain threshold, but the sum capacity improvement becomes unbounded when the interference link is strong.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call