Abstract

AbstractA detailed appraisal of Gaussian‐type orbital (GTO) and Slater‐type orbital (STO) expansions of 3d orbitals is carried out for the 2S state of copper—a case that should be maximally unfavorable for STOs. The appraisal is based on a wide variety of both position and momentum space properties and utilizes an information theoretic quality assessment technique. It is found that GTO expansions are not as useful as STO expansions for the prediction of 〈p8〉, 〈p7〉, and 〈r−6〉 because these properties probe the functional deficiencies of GTOs at small r and large p. On the other hand, GTO expansions can predict accurate values of large r properties like 〈r8〉 despite the fact that their position space asymptotic decay is too fast. Unlike the case of s orbitals in helium, there does not seem to be any consistent ordering between accuracy in position space and accuracy in momentum space. The quality measures are found to be very useful for pinpointing the deficiencies of various expansions. This information enables us to construct easily a new GTO and a new STO expansion that are more accurate than any of the others in the literature. It is suggested that one STO is worth no more than two GTOs in the case of d orbitals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.