Abstract

Multidimensional item response theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying a functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that the likelihood involves intractable multidimensional integrals due to the latent variable structure. Various methods have been proposed that involve either direct numerical approximations to the integrals or Monte Carlo simulations. However, these methods are known to be computationally demanding in high dimensions and rely on sampling data points from a posterior distribution. We propose a new Gaussian variational expectation--maximization (GVEM) algorithm which adopts variational inference to approximate the intractable marginal likelihood by a computationally feasible lower bound. In addition, the proposed algorithm can be applied to assess the dimensionality of the latent traits in an exploratory analysis. Simulation studies are conducted to demonstrate the computational efficiency and estimation precision of the new GVEM algorithm compared to the popular alternative Metropolis-Hastings Robbins-Monro algorithm. In addition, theoretical results are presented to establish the consistency of the estimator from the new GVEM algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.