Abstract

In this paper, we establish sample path large and moderate deviation principles for log-price processes in Gaussian stochastic volatility models, and study the asymptotic behavior of exit probabilities, call pricing functions, and the implied volatility. In addition, we prove that if the volatility function in an uncorrelated Gaussian model grows faster than linearly, then, for the asset price process, all the moments of order greater than one are infinite. Similar moment explosion results are obtained for correlated models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.