Abstract

Quantum Gaussian states can be considered as the majority of the practical quantum states used in quantum communications and more generally in quantum information. Here we consider their properties in relation with the geometrically uniform symmetry, a property of quantum states that greatly simplifies the derivation of the optimal decision by means of the square root measurements. In a general framework of the $N$-mode Gaussian states we show the general properties of this symmetry and the application of the optimal quantum measurements. An application example is presented, to quantum communication systems employing pulse position modulation. We prove that the geometrically uniform symmetry can be applied to the general class of multimode Gaussian states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.