Abstract

Some excellent surveys of the Gaussian random number generators (GRNGs) from the algorithmic perspective exist in the published literature to date (e.g., Thomas et al. [2007]). In the last decade, however, advancements in digital hardware have resulted in an ever-decreasing hardware cost and increased design flexibility. Additionally, recent advances in applications like gaming, weather forecasting, and simulations in physics and astronomy require faster, cheaper, and statistically accurate GRNGs. These two trends have contributed toward the development of a number of novel GRNG architectures optimized for hardware design. A detailed comparative study of these hardware architectures has been somewhat missing in the published literature. This work provides the potential user a capsulization of the published hardware GRNG architectures. We have provided the method and theory, pros and cons, and a comparative summary of the speed, statistical accuracy, and hardware resource utilization of these architectures. Finally, we have complemented this work by describing two novel hardware GRNG architectures, namely, the CLT-inversion and the multihat algorithm, respectively. These new architectures provide high tail accuracy (6σand8σ, respectively) at a low hardware cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.