Abstract
In this study, we define a type of bi-periodic Fibonacci and Lucas numbers which are called bi-periodic Fibonacci and Lucas Gaussian quaternions. We also give the relationship between negabi-periodic Fibonacci and Lucas Gaussian quaternions and bi-periodic Fibonacci and Lucas Gaussian quaternions. Moreover, we obtain the Binet’s formula, generating function, d’Ocagne’s identity, Catalan’s identity, Cassini’s identity, like-Tagiuri’s identity, Honberger’s identity and some formulas for these new type numbers. Some algebraic proporties of bi-periodic Fibonacci and Lucas Gaussian quaternions which are connected between Gaussian quaternions and bi-periodic Fibonacci and Lucas numbers are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.