Abstract

Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that shares many similarities with evolutionary computation techniques. However, the PSO is driven by the simulation of a social psychological metaphor motivated by collective behaviors of bird and other social organisms instead of the survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents novel quantum-behaved PSO (QPSO) approaches using mutation operator with Gaussian probability distribution. The application of Gaussian mutation operator instead of random sequences in QPSO is a powerful strategy to improve the QPSO performance in preventing premature convergence to local optima. In this paper, new combinations of QPSO and Gaussian probability distribution are employed in well-studied continuous optimization problems of engineering design. Two case studies are described and evaluated in this work. Our results indicate that Gaussian QPSO approaches handle such problems efficiently in terms of precision and convergence and, in most cases, they outperform the results presented in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.