Abstract
In nuclear power plants, there are high-exposure jobs, like refuelling and maintenance, that require getting close to the reactor between operation cycles. Therefore, reducing radiation dose during these periods is of paramount importance regarding safety regulations. While there are some manipulable variables, like levels of certain corrosion products, that can influence the final level of radiation dose, there is no way to determine it in a principled way. In this work, we propose to use Machine Learning to predict the radiation dose in the reactor at the cycle end based on information available during the cycle operation. In particular, we use a Gaussian Process to model the relation between cobalt radioisotopes (a certain kind of corrosion product) and radiation dose levels. Gaussian Processes acknowledge the uncertainty on their predictions, a desirable property considering the high-risk nature of the present application. We report experiments on real data gathered from five different power plants in Spain. Results show that these models can be used to estimate the future values of radiation dose in a data-driven way. Moreover, there are tools based on these models currently in development for their application in power plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.