Abstract

This work is a contribution towards the understanding of certain features of mathematical models of single neurons. Emphasis is set on neuronal firing, for which the first passage time (FPT) problem bears a fundamental relevance. We focus the attention on modeling the change of the neuron membrane potential between two consecutive spikes by Gaussian stochastic processes, both of Markov and of non-Markov types. Methods to solve the FPT problems, both of a theoretical and of a computational nature, are sketched, including the case of random initial values. Significant similarities or diversities between computational and theoretical results are pointed out, disclosing the role played by the correlation time that has been used to characterize the neuronal activity. It is highlighted that any conclusion on this matter is strongly model-dependent. In conclusion, an outline of the asymptotic behavior of FPT densities is provided, which is particularly useful to discuss neuronal firing under certain slow activity conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.